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Motivation

�On a low tra�c road, on average 1.8 cars pass per minute.�

How is information like that obtained?

Usually, they make some observations, and based on those
observations, an estimate is made for the rate of cars.

Example. We count the cars in 5 di�erent 1-minute intervals, and
we get the sample 1, 4, 0, 3, 1. Try to make a naive estimate for
the rate of cars based on this sample.
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Sample, background distribution

The general setup is as follows. A sample X1,X2, . . . ,Xn is a
collection of iid random variables from an unknown background
distribution. n is the sample size.

We usually write X1,X2, . . . ,Xn when emphasizing that the sample
is random, and x1, x2, . . . , xn for a speci�c realization.

Usually, the background distribution is from a parametric family of
distributions, denoted by Pθ(.) (or the pdf fθ(.) for continuous
distributions). θ is the parameter, with possible values from a
domain (the most typical domains are R,R+ or Z+). Multiple
parameters are also possible.

For the previous example with the cars, the background distribution
is POI(λ), where λ is unknown.
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Statistics

A statistic is a T = T (x1, . . . , xn) function of the sample.

Notable statistics:

sample mean:

x̄ =
x1 + · · ·+ xn

n
.

median: the middle element of the sample when ordered from
smallest to largest. Half of the sample elements are larger than
or equal, and half of the sample elements are smaller than or
equal to the median.

The mean and the median both aim to describe the typical
behaviour of the sample, but they can still be quite di�erent.
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Statistics

sample minimum and maximum:

xmin = min(x1, . . . , xn), xmax = max(x1, . . . , xn).

sample range:
xmax − xmin.

sample variance (or empirical variance):

s2n =
1

n

n∑
i=1

(xi − x̄)2.

sample deviation (or empirical deviation):

sn =
√

s2n .

The range and deviation both aim to describe the dispersion of the
sample, but once again, they can be quite di�erent.
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Properties of statistics

A point estimator or simply estimator is a statistic T used to
estimate the unknown parameter θ or a function of the parameter
f (θ).

Properties of estimators:

an estimator T is an unbiased estimator for θ (or f (θ)) if

Eθ(T (X1, . . . ,Xn)) = θ (or f (θ)).

Example. If the background distribution is POI(λ), then the sample
mean X̄ is an unbiased estimator for λ:

Eλ(X̄ ) = Eλ
(
X1 + · · ·+ Xn

n

)
=
λ+ · · ·+ λ

n
= λ.

So is just a single sample element:

Eλ(X1) = λ.
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Properties of statistics

Lemma

For any background distribution Pθ(.), X̄ is an unbiased estimator

for

f (θ) = Eθ(X1).

For any background distribution Pθ(.),

s∗n
2 =

n

n − 1
s2n

is an unbiased estimator for

g(θ) = D2

θ(X1).

No proof.

s∗n
2 is known as the corrected empirical variance. See also Bessel's

correction.
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Properties of statistics

There exist other unbiased estimators; for example, X1 is also an
unbiased estimator for λ. In some sense, X̄ is a better choice. We
formalize this next.

if T1 and T2 are both unbiased estimators for θ, then T1 is
said to be more e�cient than T2 if

D2

θ(T1) ≤ D2

θ(T2).

An unbiased statistic T is called e�cient if no other unbiased
statistics are more e�cient.

Example. For POI(λ) background distribution,

Dλ(X̄ ) =

√
λ√
n
, Dλ(X1) =

√
λ,

so X̄ is a more e�cient estimator for λ than X1.
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Properties of statistics

if (Tn)n=1,2,... is a sequence of statistics for all sample sizes n,
then this sequence is a consistent estimator for θ if

lim
n→∞

P(|Tn − θ| > ε) = 0 ∀ε > 0,

and it is a consistent estimator for f (θ) if

lim
n→∞

P(|Tn − f (θ)| > ε) = 0 ∀ε > 0.

The LLN guarantees that X̄ is a consistent estimator for
f (θ) = Eθ(X1) in general.

Speci�cally for POI(λ) background distribution, X̄ is a consistent
estimator for λ.
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Parameter estimation I - moment estimator

A general method to estimate the parameter of the background
distribution is the moment estimator.
The idea is to estimate the unknown parameter θ so that

Eθ(X1)) = x̄ .

Formally: if the function

g(θ) = Eθ(X1)

is invertible, then the moment estimator for θ is

θ̂ = g−1(X̄ ).
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Parameter estimation I - moment estimator

Example. We count the cars in 5 di�erent 1-minute intervals, and
we get the sample 1, 4, 0, 3, 1.

The background distribution is X1 ∼ POI(λ), and

g(λ) = Eλ(X1) = λ,

so g is the identity function, and the moment estimator in general is

λ̂ = g−1(X̄ ) = X̄ ,

and for the speci�c example, the moment estimator for λ is

λ̂ = x̄ =
1 + 4 + 0 + 3 + 1

5
= 1.8.

Stochastics Illés Horváth Statistics I - Parameter Estimation



Parameter estimation I - moment estimator

Example. We count the cars in 5 di�erent 1-minute intervals, and
we get the sample 1, 4, 0, 3, 1.

The background distribution is X1 ∼ POI(λ), and

g(λ) = Eλ(X1) = λ,

so g is the identity function, and the moment estimator in general is

λ̂ = g−1(X̄ ) = X̄ ,

and for the speci�c example, the moment estimator for λ is

λ̂ = x̄ =
1 + 4 + 0 + 3 + 1

5
= 1.8.

Stochastics Illés Horváth Statistics I - Parameter Estimation



Parameter estimation I - moment estimator

Example. We count the cars in 5 di�erent 1-minute intervals, and
we get the sample 1, 4, 0, 3, 1.

The background distribution is X1 ∼ POI(λ), and

g(λ) = Eλ(X1) = λ,

so g is the identity function, and the moment estimator in general is

λ̂ = g−1(X̄ ) = X̄ ,

and for the speci�c example, the moment estimator for λ is

λ̂ = x̄ =
1 + 4 + 0 + 3 + 1

5
= 1.8.

Stochastics Illés Horváth Statistics I - Parameter Estimation



Moment estimator for 2 parameters

If the background distribution has 2 parameters, that is, Pθ1,θ2(.),
then we consider the R2 → R2 function

g(θ1, θ2) = (Eθ1,θ2(X1),D2

θ1,θ2(X1)).

If g is invertible as an R2 → R2 function, then the moment
estimator for the parameters is

(θ̂1, θ̂2) = g−1(x̄ , s2n)

where x̄ is the sample mean and s2n is the empirical variance.
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Likelihood function

The likelihood function for a given sample x1, . . . , xn is

Lx(θ) =
n∏

i=1

Pθ(Xi = xi )

when the background distribution Pθ(.) is discrete, and

Lx(θ) =
n∏

i=1

fθ(Xi = xi )

when the background distribution is continuous with pdf fθ(.).

Essentially, the likelihood function is equal to the probability (or
density) of the sample, but viewed as the function of the parameter
θ.
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Maximum likelihood (ML) estimator

The likelihood function gives the idea for another parameter
estimation method: for a given sample

θ̂ = arg maxθ{Lx(θ)};

in plain words, the estimate for the parameter θ is the parameter
value for which Lx(θ) is maximal.

The idea is that the actual sample that occurred has a probability
depending on θ; we select the θ according to which it has the
highest probability.

The ML estimator is a concept di�erent from Bayes! The actual
value of θ is not random, we just don't know it (so we need to
make an estimate).
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Maximum likelihood (ML) estimator

The ML estimator is the maximum point of the function Lx(θ). If
the parameter θ is from a continuous domain, then this can be
computed by solving

d

dθ
Lx(θ) = 0,

then selecting the maximum from among the solutions.

There is a practical trick that generally makes the above
computation easier. The log-likelihood function for a given sample
x1, . . . , xn is

`x(θ) = log(Lx(θ)) =

{ ∑n
i=1

log(Pθ(Xi = xi ))∑n
i=1

log(fθ(Xi = xi ))
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Maximum likelihood (ML) estimator

Since log is strictly increasing, `x(θ) has its maximum at the same
point as Lx(θ), and

d

dθ
`x(θ) = 0

is typically easier to solve.

Also, points where Lx(θ) would have a local minimum at 0 do not
appear as a solution of d

dθ `x(θ) = 0.

Rule of thumb: if
d

dθ
`x(θ) = 0,

has a single solution and it is not on the border of the domain of θ,
then that solution is the maximum and it is the ML estimator for θ.
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Maximum likelihood (ML) estimator

If θ may only take integer values, then instead of

d

dθ
`x(θ) = 0,

we solve
Lx(θ + 1)

Lx(θ)
= 1

instead.

The idea is that up to a certain value of θ, Lx (θ+1)
Lx (θ)

> 1 will hold,

and the maximum will be at the point when the inequality changes
to Lx (θ+1)

Lx (θ)
< 1.
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Problem 1

We have a (possibly loaded) six-sided die where the probability p of
rolling a 6 is unknown. We roll 10 times and get the numbers 3, 6,
5, 6, 1, 4, 2, 6, 6, 4. Give a maximum likelihood estimate for p.

Solution. The sample size is n = 10. For each sample, the only
relevant information is whether it is a 6 or not, so P(Xi = 6) = p
and P(Xi 6= 6) = 1− p.

Accordingly, the likelihood function of the sample is

Lx(p) = (1−p)·p·(1−p)·p·(1−p)·(1−p)·(1−p)·p·p·(1−p) = p4(1−p)6

and the log-likelihood function is

`x(p) = log(Lx(p)) = 4 log p + 6 log(1− p).
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Problem 1

In order to compute the ML estimator, we solve

d

dp
`x(p) = 0,

which gives

d

dp
(4 log p + 6 log(1− p)) = 0

4

p
− 6

1− p
= 0

4(1− p)− 6p = 0

4− 10p = 0

p =
4

10
,

so the ML estimator is

p̂ =
4

10
.
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Problem 1

Let's compare this with what we get if we solve

d

dp
Lx(p) = 0.

This gives

d

dp
(p4(1− p)6) = 0

4p3(1− p)6 + p4 · 6(1− p)5 · (−1) = 0

p3(1− p)5 (4(1− p)− 6p) = 0.

Actually, this has 3 solutions: p = 0, p = 1 and p = 4

10
. Here, we

need to check which is the maximum out of the three. Lx(p) = 0
for p = 0 and p = 1, so those are actually minimum points, and

p̂ =
4

10
.
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Problem 2

We have a (possibly loaded) six-sided die where the probability p of
rolling a 6 is unknown. Out of 10 rolls, we get 4 sixes. Give a
maximum likelihood estimate for p. Give a moment estimate for p.

Solution. Here, the sample size is n = 1 with Xi ∼ BIN(10, p) and
xi = 4.

The likelihood function is

Lx(p) = Pp(X1 = 4) =

(
10

4

)
p4(1− p)6.

Notice that this di�ers from the likelihood function in Problem 1
only in a positive constant factor, so the two functions must have a
maximum at the same point. This is also re�ected in further
calculations.
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Problem 2

The log-likelihood function is

`x(p) = log(Lx(p)) = log

(
10

4

)
+ 4 log p + 6 log(1− p)

and we need to solve
d

dp
`x(p) = 0,

which gives

0 +
4

p
− 6

1− p
= 0.

The equation to solve at this point is identical to the equation of
Problem 1, so once again the ML estimator is

p̂ =
4

10
.
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Problem 2

For the moment estimator, we need

g(p) = Ep(X1) = 10p

for X1 ∼ BIN(10,p).

Then

g−1(x) =
x

10
,

and the moment estimator is

g−1(x̄) = g−1(4) =
4

10
.

So in this case, the moment estimator and the ML estimator are
equal.
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Problem 5

A sample of 5 values were taken from a uniform distribution on the
interval [0, a], where a is unknown. The sample is
0.212, 0.255, 0.300, 0.165, 0.068.

(a) Calculate the moment estimate for a.

(b) Calculate the ML estimate for a. (Take into account that the
likelihood function is not continuous.)
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Problem 5

Solution.

(a) For the moment estimator, we need the expectation of X1 ∼
U([0, a]):

g(a) = Ea(X1) =
a

2
,

so
g−1(x) = 2x ,

and the moment estimator for a is

â = 2 · x̄ = 2 · 0.212 + 0.255 + 0.300 + 0.165 + 0.068

5
= 0.4.
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Problem 5

Solution.

(b) The pdf of U(0, a) is

fa(x) =

{
1

a if x ∈ [0, a]
0 if x 6∈ [0, a]

and

Lx(a) =
5∏

i=1

fa(xi ).

How does the function Lx(a) look like? Let's evaluate it at
a = 0.25.

fa(x1) = f0.25(0.212) =
1

0.25

because 0.212 ∈ [0, 0.25].
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Problem 5

(b)
fa(x2) = f0.25(0.255) = 0

because 0.255 6∈ [0, 0.25].

This means that
Lx(0.25) = 0.

Actually, Lx(a) = 0 will hold for any a < 0.300. On the other
hand, for a ≥ 0.300,

fa(xi ) =
1

a
i = 1, . . . , 5,

and

Lx(a) =

{
1

a5
if a ≥ 0.300

0 if x < 0.300
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Problem 5

(b) The plot of Lx(a) looks like

0.2 0.4 0.6 0.8 1.0

100

200

300

400

Since it is not even continuous, we cannot take the derivative.
However, arg maxa(Lx(a)) = 0.300 can be determined from
the plot, so the ML estimator is

â = 0.300.

In general, for background distribution U(0, a), the ML
estimator is

â = max(xi ).
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â = 0.300.

In general, for background distribution U(0, a), the ML
estimator is
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Problem 6

A sample of 5 values were taken from a uniform distribution on the
interval [0, a], where a is unknown. The sample is
0.12, 0.08, 0.40, 0.05, 0.10. Compute the moment estimator for a.
Explain the result.

Solution. Similar to the previous problem, the moment estimator
for X1 ∼ U([0, a]) is

â = 2 · x̄ = 2 · 0.12 + 0.08 + 0.40 + 0.05 + 0.10

5
= 0.3.

The issue with this is that it is actually not possible because the
sample includes a value 0.40.

In general, the moment estimator is not guaranteed to deliver an
estimate that's actually possible.

On the other hand, the ML estimator always gives an estimate
that's possible.
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Problem 7

Historically, 60% of students pass the exam of a certain course.
Last semester, 14 students passed the exam, but the N number of
students who took the exam is unknown. Give a ML estimate for
N. Can we give a moment estimate for N?

Solution. The sample size is n = 1 with X1 ∼ BIN(N, 0.6), and

Lx(N) =

(
N

14

)
0.614 · 0.4N−14.

The plot of Lx(N) looks like
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Problem 7

To compute the maximum point, we look to solve

Lx(N + 1)

Lx(N)
= 1.

since N is a discrete parameter now.

Lx(N + 1)

Lx(N)
=

(N+1

14

)
0.614 · 0.4N+1−14(N

14

)
0.614 · 0.4N−14

=

(N+1)!
14!(N+1−14)!0.6

14 · 0.4N+1−14

N!
14!(N−14)!0.6

14 · 0.4N−14
=

(N + 1) · 0.4
(N − 13)

= 1.

The solution of this is N ≈ 22.33.
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Problem 7

This means that for 14 ≤ N < 22,

Lx(N + 1)

Lx(N)
> 1,

so Lx(N) is increasing, and for 23 ≤ N,

Lx(N + 1)

Lx(N)
< 1,

so Lx(N) is decreasing.

Altogether, Lx(N) is maximal at N = 23, and the ML estimator is

N̂ = 23.
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Problem 7

The moment estimator for N can be computed using

g(N) = EN(X1) = 0.6N,

so

g−1(x̄) =
1

0.6
14 ≈ 23.33.

Any estimate for N should give an integer number, but the moment
method might give a non-integer estimate. Rounding it to the
nearest integer is the best we can do, so the moment estimator is

N̂ = 23.
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Problem 9

In an M/M/1 queue, the number of jobs in the bu�er has
distribution PGEO(1− ρ), where ρ is the load of the queue
(0 < ρ < 1). We check the number of jobs in the queue at 5
di�erent points in time, and obtain the sample 2, 0, 4, 1, 1. Give a
moment estimate for the load of the queue. Give a maximum
likelihood estimate for the load of the queue.

Solution. For Xi ∼ PGEO(1− ρ),

g(ρ) = Eρ(X1) =
ρ

1− ρ
=

1

1− ρ
− 1,

which has inverse

g−1(x) = 1− 1

1 + x
,

so the moment estimator is

ρ̂ = g−1(x̄) = 1− 1

1 + x̄
= 1− 1

1 + 8/5
=

8

13
.

Stochastics Illés Horváth Statistics I - Parameter Estimation



Problem 9

In an M/M/1 queue, the number of jobs in the bu�er has
distribution PGEO(1− ρ), where ρ is the load of the queue
(0 < ρ < 1). We check the number of jobs in the queue at 5
di�erent points in time, and obtain the sample 2, 0, 4, 1, 1. Give a
moment estimate for the load of the queue. Give a maximum
likelihood estimate for the load of the queue.

Solution. For Xi ∼ PGEO(1− ρ),

g(ρ) = Eρ(X1) =
ρ

1− ρ
=

1

1− ρ
− 1,

which has inverse

g−1(x) = 1− 1

1 + x
,

so the moment estimator is

ρ̂ = g−1(x̄) = 1− 1

1 + x̄
= 1− 1

1 + 8/5
=

8

13
.

Stochastics Illés Horváth Statistics I - Parameter Estimation



Problem 9

In an M/M/1 queue, the number of jobs in the bu�er has
distribution PGEO(1− ρ), where ρ is the load of the queue
(0 < ρ < 1). We check the number of jobs in the queue at 5
di�erent points in time, and obtain the sample 2, 0, 4, 1, 1. Give a
moment estimate for the load of the queue. Give a maximum
likelihood estimate for the load of the queue.

Solution. For Xi ∼ PGEO(1− ρ),

g(ρ) = Eρ(X1) =
ρ

1− ρ
=

1

1− ρ
− 1,

which has inverse

g−1(x) = 1− 1

1 + x
,

so the moment estimator is

ρ̂ = g−1(x̄) = 1− 1

1 + x̄
= 1− 1

1 + 8/5
=

8

13
.

Stochastics Illés Horváth Statistics I - Parameter Estimation



Problem 9

In an M/M/1 queue, the number of jobs in the bu�er has
distribution PGEO(1− ρ), where ρ is the load of the queue
(0 < ρ < 1). We check the number of jobs in the queue at 5
di�erent points in time, and obtain the sample 2, 0, 4, 1, 1. Give a
moment estimate for the load of the queue. Give a maximum
likelihood estimate for the load of the queue.

Solution. For Xi ∼ PGEO(1− ρ),

g(ρ) = Eρ(X1) =
ρ

1− ρ
=

1

1− ρ
− 1,

which has inverse

g−1(x) = 1− 1

1 + x
,

so the moment estimator is

ρ̂ = g−1(x̄) = 1− 1

1 + x̄
= 1− 1

1 + 8/5
=

8

13
.

Stochastics Illés Horváth Statistics I - Parameter Estimation



Problem 9

The likelihood function and log-likelihood function are

Lx(ρ) = (1− ρ)ρ2 · (1− ρ)ρ0 · (1− ρ)ρ4 · (1− ρ)ρ1 · (1− ρ)ρ1 =

ρ8(1− ρ)5,

`x(ρ) = 8 log(ρ) + 5 log(1− ρ).

Solving d

dρ`x(ρ) = 0 gives the ML estimator

ρ̂ =
8

13
,

which is thus equal to the moment estimator in this case.
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